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SUMMARY

The experimental results on instability of long thin circular cylinders under
axial compression, bending, torsion, shear and external pressure are surveyed
and the generalised structural indexes related to the latter are defined. By
correlating some experimental results of other authors, the cylinder behaviour
under combined load conditions and the stabilising effect of internal pressure
are discussed. Formulas and diagrams were derived for the design of thin
circular cylinders subjected to combined loads, such as: axial compression
and pressure, bending and pressure, torsion and pressure, shear and pressure,
axial compression and bending, axial compression and torsion, bending and
torsion, bending and shear. In this connection, the generalised structural
indexes were used to evaluate directly cylinder thickness starting from design
data.

1. INTRODUCTION

Thint circular cylinders often appear as components in aircraft and more
especially in missile constructions.

The phenomena of elastic instability of thin cylindrical shells are not quite
fully understood yet, even though extensive research both basic and experi-
mental was dedicated to them by several investigators.

Among instability phenomena there are two especially — compression and

t It is specially referred here to cylinders having radius–thickness ratios higher
than 300 up to 3000 approx.
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bending which show such a complicated mechanics that the results so far
published are widely scattered, not to mention the striking discrepancies
between many theories and experimental results.

It is well known that thin circular cylinders, as regards the length effect on
instability phenomena, can be classified as short, intermediate, long and very
long" ).

The very long cylinders are the ones where, under axial compression,
Euler's general instability appears before local instability.

In the field of local instability, every yield stress (either normal o- or
tangential t) put in the form

a' Kr 12 VI 1—v2

	

Tr2E(s\2 1
( t)

originates coefficients Kr that are a function of the length parameter  Z.
The curves  Kr= Kr(Z) plotted a on log-log diagram appear in three zones :

one with  Kr  constant (short cylinders), an intermediate zone of transition
(intermediate cylinders) and one with  Kr  changing linearly (long cylinders).
In the latter case we have:

	

Kr = aZb  (2)

where  a  is in general a function of  sir  and 1)is a constant.
The values of Z separating such fields from each other depend on the stress

type. However, they do not vary widely, and in particular for Z>  100 the
cylinders always behave as long.

As such a field is the one of major practical interest, only long cylinders are
considered in the present study.

It is known that in local buckling problems, after the first buckle has
appeared (critical stress), the structure can generally withstand additional
loads up to collapse (failure stress). In thin circular cylinders under com-
pression and bending, however, there is a typical identity between critical and
failure stresses  (i.e.  a lack of capacity to withstand loads beyond critical ones).

The majority of experimental results available for the remaining load
conditions are related to failure rather than to buckling stresses( '

In the present study reference is made to failure stresses.

SYMBOLS

a  function of slr, for any non-combined load
b constant, for any non-combined load
E Young's modulus (kg/cm2)
K=o- .  12(1 —v2)(//s)2/7r2E
i structural index (kg' /2/cm)
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I generalised structural index
/ axial length of cylinder (cm)

M  bending moment (kg x cm)
p  pressure (kg/cm2)

p= P
E

( -r )' generalised pressure
.s•

P  axial load (kg)
Q  torque (kg x cm)

cylinder average radius (cm)
R  ratio of failure stress under combined loads and failure

stress under single load
s  cylinder thickness (cm)
T  shear (kg)

/2
Z = (1— v2)I  2= length parameter

rs

a  normal stress (kg/cm2)
tangential stress (kg/cm2)
Poisson's ratio

Superscripts
external

i  internal

Subscripts
buckling

/ local
M  bending

single load
p  pressure
P  axial compression
Q  torsion

failure
T  shear

2. SCOPE OF THE STUDY

For smooth thin circular cylinders, design data are generally  (see  Fig. I):
— geometrical dimensions: length / and radius  r
— applied loads:  e.g.  axial load  P,  bending moment  M,  torque  Q,  shear  T,
pressure p
— constraint conditions.

2C2
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The unknowns in the design problem are:
— material
— thickness (or thickness—radius ratio)
— failure stresses.

o

/ \
/

FIG. I

The choice of the material depends on such conditions as minimum weight,
transparency to radio waves, etc.

The scope of this study is to survey the experimental results so far obtained
for shell instability under single and combined load conditions, and derive
from them formulas and diagrams in the most generalised form. The latter
can be used directly in actual design for the evaluation of cylinder thickness.

The ratio between thickness and radius being known, working stresses can
easily be evaluated through direct calculation.
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3. INSTABII ITY OF THIN CIRCULAR CYLINDERS

3.1.  Axial compression

From a theoretical viewpoint, axial compression is by far the most interest-
ing case. At one critical value of strain under axial compression, the thin
circular cylinders snap into a diamond-shaped buckle, where the cylindrical
surface undergoes large deformations into triangular faces.

This type of buckling shows two features :
— it appears suddenly and does not allow for loads other than the critical one
— the relevant experimental results obtained up to the present time are widely
scattered.

The first attempt to see whether there was good agreement between theory
and experiment was in 1930 and was not encouraging. As a matter of fact,
the theoretical results so far reached in the investigation of elastic stability
by small-deflection theoryt gave critical stresses twice or three times larger
than the experimental ones. Theory alone has not been able yet to explain
fully such a phenomenon, and research is still being done. However, a few
basic advances have already been made.

To take into account the macroscopic deformations, Karmán and Hsue-
Shen") introduced the main second-order terms into the study of the shell
elastic balance, whereas Donnell and Wan(4) introduced the effect of initial
deviations from the assumed perfect geometrical shape. The theoretical
problem is now being investigated by many researchers and among them
we particularly mention Hoff(5.6).

Today engineers can draw only from experimental results of several
investigators. As stated earlier, such results are widely scattered: Suer,
Harris, Skene and Benjamin)71 by working on all known results have derived
diagrams of critical stresses conservatively enveloping the 90 % and 99 % of
experimental data. For design purposes in particular, they suggest the data
at 90 . Abraham") reports such data in the following formula valid for
v =OE 316.

UrPo = 0.248 x 10-7E -+ 0.185E
5— 9-7 x 10-5E— 1•81 x 10-12E 2

(3)

/*

Poisson's ratio v may be introduced in eqn. (3), by recalling general
eqns. (1) and (2) and also considering that, for axial compression, b is equal
to unity" ,7).

t Such a theory had until then proved valid for all elastic stability problems being
met in engineering.
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By operating in such a way, one obtains:

r 2

arpo =
/(1y2)

[0-235 x 10-7s +0.1755r —9.2 x 10-5 —1-72 x 10-'0
—

(4)

This formula seems to be the most reliable in view of all experimental results
and theoretical interpretations published up to the present time.

3.2. Bending

Instability phenomena in the portion subjected to bending loads are very
similar to axial compression. Small deflection theories give values of critical
stress of about 1.30 times larger than for compression. Gerard and Becker(1)
attain the same result from experimental results.

Suer, Harris, Skene and Benjamin(81, similarly to what they had already
done for compression, have performed a synthesis of all the experimental
results, by plotting diagrams which conservatively envelop the 90 % and 99
of them. Here, too, they suggest the envelope at 90 °Jo, which according to
Abraham(2), may be expressed as follows:

a rm° = 0-rpf (r)
S (5)

The function F= F(r1s) is given in Table 1.

TABLE I

rls 300 500 1000 1500 2000 2500 3000

F(r1s) 1-595 1.46 1.35 1.315 1.30 1.29 1-22

3.3. Torsion

Torsion instability is not so complicated, especially in theoretical investiga-
tions, as the two previous cases. The formula mostly used at present is the one
reported by Abraham( 2)based on the experimental results of Lundquist(9):

TrQo = 1.275E (-
ry.46 (s )1.35

Gerard and Becker" ) have made a comparison between the theory of
Batdorf, Schildcrout and Stein"°), which covers the buckling stresses, and
the experimental results obtained by several authors including Lundquist. The
experimental points, for the failure stress, cover a wide area (also here mean-

(6)
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ing scatter); however, all of them fall below the line representing the formula.
Gerard and Becker suggest the use of average values which correspond to
approximately 85 of the ones given by theory. In view of what has been
done by Suer, Harris, Skene and Benjamin for compression and bending(7'8),
it is proposed to consider a formula for torsion, conservatively enveloping
about 90 % of experimental results.

Gerard and Becker") in plotting experimental results have used the
definition of eqn. (1).

From the diagrams of Figs. 26 and 27 reported by them, one can see that
the conservative envelope of the 90 % of experimental points, with particular
reference to the range 1000 <Z < 10,000, taking h= 0.733, on the basis of a
graphic correlation, and a probability coefficient of 1-28, is obtained with

a= 0.661

By recalling the definitions of Z, (eqns. (1) and (2)) the following formula is
derived :

r) (s,\0.534 1.267

T,Qo = 0.544 (I  v2)0.633  l (7)

which expresses the tangential stress of torsional failure that conservatively
envelops 90 % of experimental results. For radius—thickness ratios between
15 and 30 G. Gabrielli" " has obtained failure stresses independent of
The comparison of eqn. (7) with such results (Fig. 2) induces the examination
of the range of hr values, where eqn. (7) is valid. Such an examination suggests
the validity of eqn. (7) is restricted to values of Ilr between 0.5 and 2.5.
Preti"2) has carried out torsion tests on thin circular cylinders, by bringing
every structure up to buckling several times. The results related to the first
applications of loads are in agreement with eqn. (7). By repeated loadings he
has obtained buckling stresses gradually decreasing down to about 60 % of
the value obtained on the first loading (value already reached at the 4th and
5th loading). Therefore, it is to be understood that eqn. (7) applies to sound
structures not previously buckled.

3.4. Shear

It is obviously not possible to attain a condition of pure shear (bending
moment identically null) on a cylinder of finite length. Lundquist's" 3'
experiences, however, have shown that if the parameter *a' is not higher
than unity in any cross-section of the cylinder, failure does not appear with
the typical form of bending, but with deformations mainly due to shear.

In spite of the simultaneous presence of bending, the maximum tangential
failure stress (on the neutral axis), derived through the small-deflection theory,
is about 1.25 times larger than failure under pure torsion.
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FIG. 2 --- Circular cylinders under torsion

The data on pure torsion used by Lundquist for comparison are those of

eqn. (6) and the I-25 factor corresponds approximately to the average value of

the shear results. As for torsion, it is proposed to consider a conservative

envelope of 90 % of experimental results. Furthermore it is necessary to refer

the results, which according to such a conception can be derived from

Lundquist's tests, not to eqn. (6) but to eqn. (7).
From a re-elaboration of Lundquist's experimental results (see section 5.8),

the tangential failure stress conservatively enveloping 90 % of experimental

results can be evaluated from

TrTo = 1•607,Q0 (8)

Such a failure stress applies to the case where  MJrT1, which can also

be considered simultaneous with other load cases.

Equation (8), even though obtained on the basis of experimental results

from a single author, appears to be confirmed by the fact that pure torsion

tests made by the same author show a scattering similar to the one appearing

in all the available results" ). Therefore, it seems credible that Lundquist's

shear tests are also a cross-section of the scattering and conservative envelope

at 90 %, that could be obtained by extending experiments.
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3.5.  External pressure

Both theory and experience indicate that for long cylinders  (Z>  100) there
is no difference between failure radial and hydrostatic pressurest.

Windemberg and Trilling14) have derived, from experimental data, an
equation based on the theoretical results of von Mises. For  Z>  100 failure
circumferential stress is

(I —v2)0'75 I r — 0.635(r / 0(s/r)().5
E r (s)1.  5

This relation is in excellent agreement with Batdorf's theory and Sturm's
results as reported by Gerard and Becker(' ), but does not appear under
monomial form which is easier to handle. In order to have an expression in
good agreement with the above results and valid in the field of our interest
(Z>  100 and 300 <  rls <  3000) it is possible to simplify the previous equation
introducing in it an average constant value for the term 0-635(0)(s/r)°•5.
Operating one obtains the following expression of the failure circumferential
stress:

)
(9)o-rpo= 0.88

that is valid both for radial pressure and hydrostatic pressures, which will be
referred to in the subsequent considerations.

4. THE GENERALISED STRUCTURAL INDEXES

In structural design the structural indexes are of great use. They have been
thoroughly dealt with by G. Gabrielli" S'. For the present study it is enough
to remember that the main features of the structural index are as follows:

it covers all and only design data: loads and dimensions,  i.e.,  a typical
force of the system of forces applied to a typical length of structure dimensions
(shape is obviously predetermined).

it is invariant for geometrically similar structures, of the same material
and similarly loaded, and represents in a typical way the static conditions of
infinite similar structures by pointing out the interrelation between applied
loads and dimensions.

The major advantage of the use of the structural index in design is that it

1-By radial pressure is meant a pressure applied to cylinder lateral surface only,
and capable of generating in the shell the circumferential stress  a,=p(rls)  only. By
hydrostatic pressure is meant a pressure applied to cylinder lateral surface and
bases as well, and capable of generating other than the circumferential stress a
longitudinal stress ax  .1p(ris), and consequently an axial load  P=irr2p.

a,0 =  0.855

E r (

s1'5
v2)0.75 / r
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allows direct calculations by using data of general validity put into the form

of failure stresses as a function of the structural load itself.

In the present study a generalisation of the structural indexes relative to the
cases under consideration is proposed. It is assumed that the material of the

shell to be designed is known, and, by introducing the generalised structural

indexes, one puts in an extremely simple and general form all the expressions of

failure conditions previously presented. They allow design calculations to be

made directly, even in the case of two simultaneous combined loads. To this

end, interaction equations in terms of generalised structural indexes are

derived, and related curves of general validity are plotted.

Equations (4), (5), (7), (8) and (9) are in the form :

(Tr = E(1 1,2)"' G (s)
r r

when in and  n  are numerical exponents and G(s1r) is a function depending

on the case being considered.

Recalling the definitions of structural indexes' '5' also reported in Table 2,

such an equation can be put in the form

ir2 = E(I — 2yr,(1)"G*

rr

G*0 = GO
r r r

Let us consider the index 4, such that

fr2 = ir2E-  1( 1 - V2 cry.
The preceding equation becomes

ir2 G

(r)

In such an equation on the left-hand side the index contains all and only

design data (loads, external dimensions, shape) and the values to be chosen

at design (Young's modulus, Poisson's ratio). On the right-hand side there is

a function of the single unknown of the problem, slr.
The equation itself, in its formal validity, is invariant for any instablity

problem of long thin cylinders under noncombined load conditions.

The various expressions of G*(s1r) related to individual cases are also

invariants for the same cylinders under the relevant load conditions.

Table 2 gives the definitions of both structural indexes and generalised
structural indexes for the load cases considered.

where



TABLE 2

Load Structural index Generalised structural index
kg1121cnt

Axial
compression

I P

2-irr'

I p (. 2)0•5

Cj ir)1 71r2E

Bending \ /7-,r3,o„mx ,(0-)
/Al/(l -
I -

7r3 \E

Q _ v2) )) .563 ( )0•267

1771-3

T /(1  j,2) )1•663 o• 267

irr2 E

Torsion IQ
I Q

r 3  N'T  N(sir)

Shear
T

iT -
r

(sir)

External

pressure

Internal


pressure

- ,2)O-75y.5
L

= -.41/E)

Table 3 gives the expressions for the generalised failure structural indexes
derived from eqns. (4), (5), (7), (8) and (9).

TABLE 3

Load Failure generalised structural index

—

Axial

compression
1;21,0 0.235 x 100.1755(r - 9.2 10 -" - 1.72 x10--" ( )

Bending

Torsion

Shear

Er'.7f„ 


(s)2. 267

- 0-544

1,,,,,--0.870 (5 r)  2. 267

Radial or
hydrostatic
external
pressure

0.88(
r
s.)2.5
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Figure 3 gives the generalised structural index in the field of interest at
failure stresses under noncombined load conditions plotted against rls.

20•104

rr

15.10

10.10-4

5-10-4

0
0 500 1000 1500 2 000 2500 r/s 3000

FIG. 3 — Failure values of generalised indexes for noncombined

loading conditions

5. THE INTERACTION BETWEEN COMBINED LOADS

5.1.  Axial compression and pressure

Internal pressure has a stabilising effect on the compression instability
phenomena. The nature of such an effect is very involved and not fully
understood.

Suer, Harris, Skene and Benjaminun have worked out the available
experimental results by calculating curves conservatively enveloping the 90 %.
Abraham(2), for v =0.316, reports such results in the form :
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Aur, r

s 0.7 +4-2fi

p (r)2

E s

As for single compression, one can introduce Poisson's ratio. Following
section 3.1, one obtains

(10)
E s 0.737 + 4-425j)

It should be noted that according to eqn. (10), the maximum stresses
assume values equal to 2/3 of the ones given by the small-deflection theory, of
which about 1/3 is made up by c„. and 1/3 by AurPt. The impossibility of
reaching, through internal pressure stability, the value given by the small-
deflection theory is an anomaly in the instability phenomena of this type.
For example, in cylinder bending, in cone compression and bending such a
value is normally reached.

Weingarten, Morgan and Seide"6), have obtained on polyesther resin
cylinders with internal pressure, failure stresses which asymptototically
approach the ones in small-deflection theory. They also observed that under
the combined effect of internal pressure and axial load, as soon as the elastic
limit is reached a drop by Acr,.,, will be recorded. In the case of the polyesther
resin, this happens for high values of fi, when ar,, has already virtually reached
the theoretical value.

For materials used in the tests by Suer, Harris, Skene and Benjamin (steels,
aluminium alloys, etc.), this happens before such a value is reached. How-
ever, eqn. (10) gives a good interpretation of the initial stretches of the Aurp

curves in terms of obtained by Weingarten, Morgan and Seide. It is used
here, by assuming that it is conservative for materials with high elastic limit
at the higher values oft.

Gerard and Becker" ) and Abraham" report the following equation for
the interaction between axial compression and external pressure:

Rp+Rp= 1 (11)

5.2.  Bending and pressure

Internal pressure also has a stabilising effect in bending. Suer, Harris,
Skene and Benjamin"), by operating on test data where only radial pressure
was present, have determined the curve conservatively enveloping 90 % of
experimental results. It is deemed proper to suggest a representation of such
a curve by the following equation:

t According to the small-deflection theory, one has Œrr„ Jarro=0.

where



796 Aerospace Proceedings 1966

\ (1—r
Aar„- = 0-362p0•223 (12)

valid for radial pressure and for values of p up to about 8.
Gerard and Becker" and Abraham(2) for the interaction between bending

and external pressure report an equation similar to eqn. (11).

R,,-FRp= I (13)

5.3. Torsion and pressure

According to Crate, Batdorf and Baab"7) and Abraham(25, the follow-
ing interaction law between torsion and pressure is valid both for external
and internal pressures:

R(22+ Rp = I (14)

where Rp is related to the critical external pressure and where for external
and internal pressures, respectively

R p = R;;  Rp = — Rip

For external pressure, eqn. (14) applies both for hydrostatic and radial
pressures, while it is thought that for internal pressure it applies for
hydrostatic pressure only.

5.4. Shear and pressure

Abraham(2) reports a law similar to eqn. (2):

R;.+ Rp = 1 (15)

where Rp is related to the critical external pressure and where for external
and internal pressures, respectively

Rp = R`p ; Rp = —

It is thought that eqn. (15) applies for both hydrostatic and radial pressures
in the case of external pressure, and only for hydrostatic pressure in the case
of internal pressure.

5.5. Axial compression and bending

According to Bruhn"), Gerard and Becker" ' and Abraham (2), the
following interaction law is valid

Rp+R, = 1 (16)
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5.6. Axial compression and torsion

Abraham(2) reports the following interaction law

	

R+R = 1 (17)

5.7. Bending and torsion

Gerard and Becker report the following interaction law

	

+ R26 = 1  (18)

For ratios rls between 15 and 30 G. Gabrielli" " has found an interaction
law similar to eqn. (18).

5.8. Bending and shear

Simultaneous bending and shear has been investigated experimentally by
Lundquist. He also derived a diagram taking into account the interaction
between both loads and suggested its use in design. Such a diagram was
derived with the following linear interaction between the local compressive
stresses due to bending and shear stresses, both being calculated on the basis
of St. Venant's hypothesis:

Rmi+Kri = 1

and by taking as failure stresses under separate load conditions the ones
obtained by Lundquist himself(9'19).

Lundquist compared  a posteriori  the results of this theory with the experi-
mental results, and found them to be in fair agreement.

Since Lundquist" has largely reported the results of experimental
measurements, it does not seem useless here to do a complete re-elaboration
of them, where the conservative envelope criterion of about 90 % of results is
introduced.

To this end, for bending moment and compression stresses, the section
with maximum moment is assumed as reference.

In such a section, the generalised failure structural indexes  (see  section 4)
4, and 4, are evaluated.

Once the generalised structural indexes relating to the noncombined load
conditions /,.m.and 4Q° have been evaluated, one plots, on an x- and y-plane
diagram, the points:

Such points, due to the very nature of the generalised structural indexes,
make abstraction both from the geometrical ratios rls and the material

1rm )2 (1 1
IrM 0  InQo



798 Aerospace Proceedings 1966

characteristics y and E. They are, instead, affected by scattering, which, as
stated earlier, interests the results related both to bending and shear, and
express the interaction between both types of loads. Under this form,
Lundquist's results may be interpreted with the aid of the envelope criterion.
It is to be noted that if, from test results, one wants to draw general conclusions
from cylinders of different materials (presently, however, the literature known
to us only reports Lundquist's results), the form here suggested is the most
suitable.

The points obtained in the above way are reported in Fig. 4.
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From this, one can see that a conservative envelope of experimental results
virtually ends at  (4,//,.Q0)2 = 1-6.

When I rT tends toward zero, the envelope itself gives values of  /r,//r,0
higher than unity. This means that Lundquist's experience on bending
failure, have a conservative envelope higher than that of Suer, Harris, Skene,
and Benjamin who operated on a larger range of experimental results. In
order to take into account the results of these authors, it is proposed to modify
the interaction curve obtained from the re-elaboration of Lundquist's data,
as shown in Fig. 4.

The proposed interaction curve is represented with good approximation by
the following equation:

( 1 r 2  ) 1.2  r  12.4
r,,

I
r 


10.61 RI, } -0.39 ji 1_1r(20\' 1-6
It was obtained by reducing all ordinates /r„//r,r, according to the ratio

(irmiirmdIrT o'

6. DESIGN FORMULAS AND DIAGRAMS FOR TWO

COMBINED LOADS

In this section. the interaction eqns. (10) to (19) introducing the generalised
structural indexes defined under section 4 are put in the following form:

f(,
rAo

1,44 .)0

I rgo



where  A  and  B  indicate two general cases of load.
The structural indexes and  /rBr,  are, as we have seen, functions of  rls

(section 4). Such functions, for the cases being examined, are given in Table 3.
Therefore, eqn. (20), may be thought of as a function

.1"(1rA, 1 „, r/s) = 0 (20')

and the curves  /rA = IrA(Irg) for  rls=const  may be plotted on x- and y-axes.
Equations (20) and (20') are invariant for long thin cylinders of isotropic

material. With the related diagrams, one can immediately, and through direct
calculation, design any circular long thin cylinder of isotropic material
subjected to combined loads. It is sufficient to enter the diagram relating to
the desired load combination with the values 4, and Irg and determine the
value of  rls.

The formulas of section 3 also determine failure stresses through direct
evaluation.

The diagrams also give immediate verification. In fact, if  slr  is known, it
will be enough to intersect the corresponding curve with the straight line
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from the origin passing through the point (IA, /B) which is evaluated from
the ultimate loads. Such a point gives the generalised failure structural
indexes (I,A, 413). The reserve factor may be evaluated as follows:

/ z 2it  j .rB

F . R . = =

6.1.  Axial compression and pressure

Failure stress under pure compression is given by eqn. (4).
Recalling eqn. (10), the failure stress under compression in the case of

simultaneous internal pressure is:

E  s
rP• =6rPo+ (21)

(1 — r 2) r  0.737+4.425p

where P* must be considered for hydrostatic pressure and

p (r)2

= E s
and P* = P — pmr2

Passing to the generalised structural indexes, one has

r2P. = CrrP* E r
and ultimately

I = 1,13°1-
0.737 + 4.425/;2p( tis)2

p

Equation (22) is plotted in Fig. 5(a).
For external pressure, the interaction equation under the form of generalised

structural indexes has the simple expression

I 2p

+ P2 =  1 (23)
/;,,o  I  o

as it is easily demonstrated by recalling eqn. (11).
Equation (23) is plotted in Fig. 5(b).

6.2. Bending and pressure

For internal and radial pressure, by operating similarly to compression,
one obtains:

from which

p /I.\ 20.223

a rM = arMo+ ,(1,2) r 0.362
[E

s 2  1:2 r  2 0.223
ir2m1,244„+  0-362

r s
(24)

(22)
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Equation (24) is plotted in Fig. 6(a). The curves are broken where the value
of p = 8 is reached.

For external pressure one has, as is easily shown :

rM /
=

12
-4- / e2
mo 0 	 I


Equation (25) is plotted in Fig. 6(b).

6.3.  Torsion and pressure

For external and internal pressures, respectively, one has, as is easily
shown

/4 12rQ rp

14 +
7e2

= 1
rQo rPo

= 2 ; r2 p =rp 
p 	 rp

Equation (26) is plotted in Figs.  7(a)  and  7(b).

6.4.  Shear and pressure

For external and internal pressures, respectively, one has, as is easily
shown

[

/ 4 4-T./e20 —

	

I 2 = 1 ; = I ,!rp rp

Equation (27) is plotted in Figs. 8(a) and 8(b).

6.5.  Axial compression and bending

One has, as is easily shown

1.  2,„ r Al

=p i2o+ mor 	 I

Equation (28) is plotted in Fig. 9.

6.6.  Axial compression and torsion

One has, as is easily shown
2 41,„, 1rQ

f —
I  2P0 4r I rQo

Equation (29) is plotted in Fig. 10.
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6.7. Bending and torsion

One has, as is easily shown

1,(2

I3M„ rQo

Equation (30) is plotted in Fig. 11.

(30)

6.8. Bending aml shear

As shown in section 5.8, eqn. (19) is valid

( ,  L
rvo /1.6)

,rm \ 2 0.39 1 }I -2 + \ 2.4

10'6 I 


In this equation, 4,4 is assumed to be calculated for the section of maximum

moment.
Equation (19) is plotted in Fig. 12.
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DISCUSSION


Prof. Josef Singer (Dept. of Aeronautical Engineering, Technion Israel

Institute of Technology, Haifa, Israel): I feel that data on which empirical


interaction curves for buckling under combined loading are based is not very

satisfactory. Most empirical interaction curves are based on tests in which

each specimen is subjected to a particular combination of loads, and the

critical loads are compared to single load reference points obtained on other

specimens. The resulting large scatter is mostly due to the differences between

the specimens. Less scatter can be obtained by repeated buckling of the same

specimen over the complete interaction range, if sufficient care is taken. For

example, in a recent series of tests on buckling of conical shells under com-




bined loading of axial compression, torsion and external pressuret, one
specimen was buckled 162 times with a rate of decrease in buckling torque

of 0.05 % per test and 0.2 % in buckling pressure per test.

Hence a plea is made for new and better tests to re-evaluate existing
empirical interaction formulae.

E. Antona and G. Gabrielli: It is  certainly desirable that the experimental re-




search on the combined loads interaction will be improved and extended to

obtain a very large amount of new data concerning all the loading conditions.

It is our opinion that the basic point for the experimental work is to have

t SINGER, J., BERKOVITZ, A., WELLER, T., ISHAI, O., BARUCH, M., HARARI, O.,
'Experimental and Theoretical Studies on Buckling of Conical and Cylindrical
Shells under combined Loading,' TAE Report 48, Technion Research and Develop-
ment Foundation, Haifa, Israel, June 1966.

20
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a large number of experimental data for a statistical analysis. We are however
doubtful of the value of using only one specimen for repeated buckling tests
under combined loads. We think that this procedure would not be useful in
reducing the scattering of experimental results arising from different behaviour
of many specimens. On this subject we will consult the reference cited by the
discussor.

J. Johns (Reader in Aeronautical Engineering, University of Technology,
Loughborough, Leics., U.K.): The authors, in section 3.2, have quoted the
theoretical result for isotropic shells that the critical bending stress is about
1.3 times that for uniform compression. It has been shown more recentlyt
that if sufficient modes are included in the bending analysis then these critical
stresses are generally equal.

The speaker has performed calculations for shells subjected to uniform
bending moment or linear bending moment (i.e. due to transverse end load)
and by choosing a few modal forms which emphasise the (anticipated) local
nature of the buckling it has been possible to deduce the following general
implication, namely linear buckling of a circular cylindrical shell due to a
non-uniform axial compressive stress distribution will occur at a load level
where the maximum local stress equals the uniform stress for buckling.

It is known that the corresponding experimental buckling stress levels are
usually significantly lower than the values based on linear small deflection
theory, and that for non-uniform axial stress distributions the experimental
buckling stresses are greater than for uniform distributions. This is to be
expected since there is then less chance that the position of maximum axial
stress would coincide with the position where buckling would begin for a
uniform stress in the practical shell.

Antona and G. Gabrielli:  The failure stress expressions adopted in our
paper are based only on experimental results. The theoretical result related
to the bending load was reported only because of its practical agreement with
the experimental one.

The hypothesis advanced by Mr. Johns, based on the theoretical results he
mentioned, must be carefully studied , lt is actually possible that the discrepan-
cies between compression and bending failure stress would arise from the
probability that the generatrix of major stress in bending coincides with the
buckling one in compression.

t SLIDE, P., WEINGARTEN, V., 'On the Buckling of Circular Cylinders under Pure
Bending,' Trans ASME (Series A), J App Mech, p. 112, March 1961.




